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Nomenclature

A c

A_

(A,B,C, D)

(A,B,C,D)

(A,B,C,D)

(A f, B f, C f, D f)

(At, Bt, Ct, Dr)

a(i) n(i) r,(i) n(i)_
_W' _W' "W' _WJ

C

C_

d

F

YL(P, K)

Yu(P, AP)

/',G(s)

GA(S)

Gf

G (s)

G_(s)

G,A(s)

g

H

H_

I

Ira, Ip

matrix defined by equation (B21)

system matrix for perturbed phase 0 simulation

minimal state-variable realization matrices for G(s)

balanced realization matrices used to define optimal compensator

in appendix B

realization matrices employed in defining optimal robust compen-

sator in appendix B

state-variable realization matrices of 25-mode model in phase 0

simulation

state-variable realization matrices for truncated system AG(s) in

phase 0 simulation

state-variable realization matrices for loop-shaping functions (i =

1,2), defined by equations (55) to (61)

field of complex numbers

output matrix in state-variable realization of perturbed phase 0

system

disturbance vector (see fig. 2)

generalized control gain matrix defined by equation (A27)

scalar function defined by equation (54)

lower linear fractional transform

upper linear fractional transform

p × m transfer function matrix with real-rational function elements

perturbation to G(s) matrix

G(s) matrix after augmentation by loop-shaping functions

design model transfer function matrix for evolutionary model study

perturbed plant matrix

transfer function matrix for perturbed G(s)

G_(s) matrix after augmentation by loop-shaping functions

acceleration due to gravity (lg _ 32.174 ft/sec 2)

generalized filter gain matrix defined by equation (A21)

Hardy space of complex-valued functions (F(s)) of a complex

variable (s) that are analytic and bounded in the open right half-

plane in the sense that sup {I F(s) I: Re (s) > 0} < bwherebis

a real number

identity matrix of appropriate order

m x m and p × p identity matrices, respectively
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J

K(s)

KA(S)

Kc(s)

M,N

M,N

_'l A, ffq A

MA_, NA a

n

nl, n2

P

AP

Q

R

R

R n

t_n ",<n

RH_

RL_

S

8

t

U,V

0

u(s)

feedback compensator matrix for G(s)

feedback compensator matrix for GA(S )

central suboptimal compensator matrix defined by equation (B28)

positive real parameters employed in equation (54)

factors in right-coprime factorization of G(s) matrix defined by

equation (A24)

factors in left-coprime factorization of G(s) matrix defined by

equation (4)

perturbations to left-coprime factors of G(s) matrix

left-coprime factors for GA(S ) matrix

left-coprime factors for GA_(S)

order of system matrix for minimum realization of G(s)

orders of system matrices in state-variable realizations of Wl(s)

and W2(s), respectively

generalized plant transfer function matrix (also used in appendix A

to denote reachability gramian)

generalized perturbation matrix

observability gramian matrix

matrix defined by equation (B25)

field of real numbers

vector space of n x 1 matrices with real elements

vector space of n × n matrices with real elements

subset of RLc_ made up of all asymptotically stable, proper trans-

fer function matrices

space of all real-rational proper transfer function matrices that

have no poles on the imaginary axis of the complex plane

multiplicity of largest Hankel singular value of (A, B, (2, D)

realization

exogenous inputs (see fig. 2)

matrix defined by equation (B19)

Laplace transform variable

time variable, t E [0, oc)

right-coprime factors for compensator K matrix defined by equa-

tion (23)

matrix defined by equation (B10)

Laplace transform of u(t) vector
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u(t)

(u, v), (u, v)

v

Wl

X

y(s)

y(t)

Z

z

0

F

7

7rain

(6¢1,

(6,h

7/

A_(A)

(ri(A)

o(A)

(I)

system input vector in time domain

left- and right-coprime factors used in equations (A13) and (A23),

respectively

exogenous input vectors to P in figure 1

transfer function matrices used in loop shaping

matrix defined by equation (B27)

matrix solution of generalized control algebraic Riccati equation

(GCARE)

Laplace transform of y(t) vector

system output vector in time domain

matrix solution of generalized filter algebraic Riccati equation

(GFARE)

error signal vector from P (see fig. 1)

null matrix of appropriate order

matrix defined by equation (B9)

positive real number, 1/e

positive real nmnber, 1/qnax

random numbers uniformly distributed within [-0.1, 0.1], where

i=1 .... ,9

random numbers uniformly distributed within [-0.01, 0.01], where

i = 1,... ,9

positive real number used as a robustness measure

largest value of e achievable by choosing K from all compensators

that stabilize G

diagonal matrix of damping ratios of 25-mode phase 0 simulation

model

damping ratio for ith mode of phase 0 simulation model, where

i = 1 ..... 25

perturbed value of damping ratio _i, where i = 1 ..... 9

measurement noise (see fig. 2)

ith eigenvalue of matrix A

diagonal gramian matrix occurring in balanced realization

ith singular vahle of matrix A

largest singular value of matrix A

smallest singular value of matrix A

ith Hankel singular value of matrix G E RH_c

mode shape matrix
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Abbreviations:

CSI

GCARE

GFARE

inf

NLCF

NRCF

sup

Subscripts:

cl

H

max

nlin

Superscripts:

T

-1

,

Notations:

II.

LI.IIH

RHoo function satisfying matrix II _ ]]oo _< 1

diagonal matrix of frequencies of 25-mode phase 0 simulation

model, rad/sec

frequency, rad/sec or Hz

frequency of ith mode in phase 0 simulation model, rad/sec or Hz

perturbed values of w_, tad/see or Hz

Control-Structures Interaction

generalized control algebraic Riccati equation

generalized filter algebraic Riccati equation

greatest lower bound

normalized left-coprime factorization

normalized right-coprime factorization

least upper bound

closed loop

Hankel norm

maximum

minimum

matrix transpose

matrix inverse

matrix transpose with argument s replaced by -s

H_c norm defined by equation (A12)

Hankcl norm defined by equation (A10)

definition by equality (e.g., A := B denotes A is defined by

equality to B)

block matrix notation: transfer function matrix C(sI - A)-IB + D

for compatible matrices (A, B, C, D)
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Abstract

Stabilization is a fundamental requirement in the design o] feedback compen-

sators for flexible structures. The search for the largest neighborhood around

a given design plant for which a single controller produces closed-loop stability

can be formulated as an H_ control problem. The use of normalized coprime

factor plant descriptions, in which the plant perturbations are defined as ad-

ditive modifications to the coprime factors, leads to a closed-form expression

for the maximum neighborhood boundary allowing optimal and suboptimal H_¢

compensators to be computed directly without the usual _ iteration. This pa-

per gives a summary of the theory on robust stabilization using normalized co-

prime factor plant descriptions, and it describes the application of the theory to

the computation of robustly stable compensators for the phase 0 version of the

Control-Structures Interaction (CSI) Evolutionary Model. Results from the ap-

plication indicate that the suboptimal version of the theory has the potential of

providing the basis for the computation of low-authority compensators that are

robustly stable to expected variations in design model parameters and additive

unmodeled dynamics.

Introduction

In the design of controllers for physical systems, some trade-off is usually performed between

design model accuracy and mathematical complexity. The more accurate analysis models often

require computational time that is too excessive to qualify them as design models for control

purposes. Also, many of the most widely used multivariable design techniques work best for

moderate-order, linear, time-invariant design models (Maciejowski 1989). In practice, high-order

nonlinear models are typically linearized about some operating condition and have their model

order reduced to produce design models that conform to computational limitations or compensator

implementation constraints. These practicalities introduce modeling errors in the form of unmodeled

dynamics that must be accounted for in the controller design process. Additionally, parameters in

the design and analysis models are not always accurately known and can cause destabilizing effects

if parametric uncertainty is ignored or improperly treated.

The foregoing considerations are especially critical in the design of controllers for flexible space

structures (Joshi 1989). Space structure controller design models are generally obtained through

some order-reduction procedure applied to a high-order analysis model obtained from finite element

techniques. The order-reduction process essentially deletes a portion of the finite element model to

produce a lower order controller design model. Although the unmodeled dynamics (represented by

the deleted portion) are no longer contained in the design model, they can still be influenced by

control inputs. Care must be taken in the design process to avoid control and observability spillover

effects (Balms 1982) that destabilize the unmodeled dynamics. Also, the high-order model contains

parametric uncertainties in natural frequencies, damping ratios, and mode shapes and slopes that

get passed through to the design model. A fundamental requirement of control law design for flexible

space structures is then the attainment and preservation of closed-loop stability in the presence of

unmodeled dyImmics and parameter uncertainties.

Nonparametric uncertainties, such as unmodeled dynamics, typically occur in the high-frequency

region of physical models. In controller design, unmodeled dynamics are normally treated, oflen

at the expense of reduced performance, by rolling off the compensator over a high-frequency band.

Rolling off the compensator in this manner can be especially limiting for flexible structures in which

unknown elastic modes are low-frequency, closely spaced, and fall within the bandwidth of the

controller. The treatment of parametric uncertainties is still an open area of research (Dorato and



Yedavalli1990).In this studyweareconcernedwith compensatorsthat robustlystabilizea given
systemin thepresenceof both parametric and nonparametric uncertainties.

Uncertainties may be viewed as perturbations about a nominal design model. If a single

compensator stabilizes the nominal plant and, in addition, all systems within some neighborhood of

the plant generated by the perturbations, the compensator is said to robustly stabilize the overall

family of systems. The search for the largest neighborhood around a given design plant for which a

single controller produces closed-loop stability can be formulated as an Hoc control problem. Glover

and McFarlane (1989) show that the use of normalized coprime factor plant descriptions, in which the

plant perturbations are defined as additive modifications to the coprime factors, leads to a closed-

form expression for the maximum perturbation radius. The maximum radius can be computed

directly in terms of the design model, thus allowing optimal and suboptimal robust compensators

to be found without the usual 3, iteration of the Hoc design.

This paper describes an application of the Glover-McFarlane robust stabilization theory to the

control of a simulated structure configured to have many of the dynamic characteristics and controller

design difficulties associated with flexible space structures. We begin with a description of the general

robust stabilization problem followed by an overview of its results for normalized coprime factor

plant descriptions. Mathematical background material is presented in appendix A, and the major

computational algorithms for computing optimal and suboptimal robust controllers are presented

in appendix B. Next, these theoretical results are applied to the computation of robustly stable

compensators for the phase 0 version of the NASA Control-Structures Interaction (CSI) Evolutionary

Model. Analysis of the compensators indicates that for the class of applications considered, the

suboptimal version of the theory has the potential of providing the basis for the computation of

low-authority controllers that are robustly stable to expected variations in design model parameters

and additive unmodeled dynamics.

General Robust Stabilization Problem

In terms of transfer function matrix models of the design system, plant uncertainties (unmodelcd

dynamics and parameter inaccuracies) can be modeled in several ways. Let G(s) represent a p > m

transfer matrix and AG(s) denote some perturbation to G(s), both with real-rational elements. A

perturbation is called additive if the perturbed plant (GA) is written as

GA = G + AG (I)

and it is called multiplicative when

or

G5 = (Ip + AG)G

Ga = G(Im + AG)

(2)

(a)

A third method of modeling plant uncertainty involves the use of coprimc factorizations (appen-

dix A). Here, G is written in coprime factor form and the system perturbations are defined in terms

of perturbations to the respective coprime factors. Any (stable or not) transfer function matrix

(G(s)) can be represented in terms of a pair of asymptotically stable, real-rational, proper transfer

function matrices that are coprime. For a left-coprime factor form with (M E RHoc,N E RHo, ),

we have

G = (4)

and the perturbed system (GA) is given by

(5)



with

AG--[ANI, AI_I] • RHoo (6)

Controller design employing uncertainty models in equations (1) to (3) has been widely inves-

tigated; see, for example, Chen and Desoer (1982) and Doyle and Stein (1981). Design methods

employing coprime factor models such as equations (4) to (6) have not been as widely accepted

or employed as the additive and multiplicative forms; however, they have been shown to have

many theoretical and computational benefits by Vidyasagar (1985) and by McFarlane, Glover, and

Vidyasagar (1990).

Each uncertainty model can be represented as a special case of an upper linear fractional
transformation

GA = _'u(P, AP) = P22 + P21 AP(I - PllAP) -1 P12 (7)

where det(I- PllAP) _ 0 and

Pll I PI2]P .... ±___

P21 P22 Jt

The standard plants P associated with three of the foregoing uncertainty descriptions are

(8)

p

G

AP _-- AG (9)

and

p AP _-- AG (10)

Q I

M 1 G

P = 1_ -1 G 5P = [AN,-AM] (11)

for equations (1), (2), and (5), respectively. Equation (7) represents a generalized uncertainty model,

and the process of using feedback to stabilize and control P can be represented as the block diagram

shown in figure 1.

By employing figure 1, a general robust stabilization problem can be posed (McFarlane and

Glover 1990). From viewing GA as a family of perturbed models for a given class of perturbations

AP, one can seek a single compensator K(s) that stabilizes not only G (that is, GA with AP = 0)

but all members of the GA family. If AP belongs to a class of admissible perturbations defined as

the union of the set of stable bounded perturbations (RH_c) and tile set of perturbations in RL_ for

which G and GA have an equal number of closed right half-plane poles, then the following theorem

can be established (McFarlane and Glover 1990).

Robust Stabilization Theorem

For any P22 of P given by equation (8) with stabitizable and detectable state-variable realization,

the compensator K(s) of figure 1 stabilizes GA = _-u(P, AP) for all admissible values of Ap such

that [[ AP ][vc < e if, and only if,

3



I. K stabilizesG

and

2. IIUL(P,K)lloo < e-1

wherethelowerlinearfractionaltransformisgivenby

9rL(P, K) ----Pll +P12 K(I - P22K) -l P21 (12)

The parameter e in the theorem can be viewed as a measure of robust stability for a given closed-
loop system• The problem of finding the largest level of robust stability is termed the optimal robust

stabilization problem and is formally stated in the following discussion.

Optimal Robust Stabilization Problem

Find the largest strictly positive number e = emax such that for all admissible AP values satisfying

[I AP Iioo < e, a single controller exists that stabilizes 5ru(P, AP). From the robust stabilization

theorem,

(io ),emax = K II _-g( P, K)II_ (13)

where K is chosen from all controllers that stabilize G.

The computation of emax thus involves the solution of an H_c optimization problem such as that

discussed by Francis (1987) or Doyle et al. (1989); that is, find

inf

K [I _L(P, K) ]Ix = 7mi, (14)

over all controllers K that stabilize G. This Hoe problem can be posed for each representation

of the additive, multiplicative, and coprime factorization uncertainty classes. In the additive and

multiplicative cases, the solution typically involves a computationally intensive iterative procedure

to find tile smallest 3 (whereby 7 = _min) such that the suboptimal robust stabilization problem

inf

K II-_L( P, K)I1_ < (15)

is solved. The solution of the optimal robust stabilization problem for the coprime factorization

uncertainty class can also be approached in a similar manner; however, if the coprime factors of G

are normalized, the _ iteration procedure can be completely avoided and the computational effort

greatly reduced.

Robust Stabilization Problem for Descriptions of the Normalized Coprime

Factor Plant

Let G(s) have the coprime factor plant representation of equation (4). With P and Ap given

by equations (11),

[K] (I- GK) -1 _-1 (16)9rL(P, K) =

Also, because JAM, AiNI] C RHoc, the set of admissible perturbations contains only elements within

RHoc, whereby the need to observe the equality condition on the poles of G and GA is completely

eliminated•



Whenthecoprimefactorsofequation(4)arenormalized,that is,satisfytherelation

M(s) M*(s) + l_I(s)l_I*(s)-- I (17)

the solution to the corresponding optimal or suboptimal robust stabilization problem has a surpris-

ingly simplified form. For the problem of designing a controller K that robustly stabilizes a plant G

written in normalized left-coprime factor form, the following properties hold:

1. A controller K is stabilizing for G and satisfies

H IK](I-GK)-I M-11[oc_<'7--e -1
(18)

if, and only if, K has a right-coprime factorization

K = UV -1 (19)

for some (U E RHoc,V E RHoc) satisfying

[v l•II [-N, M] + ]l_ -< (1 -- _-2)1/2 = (1 -- _2)1/2 (20)

2. Solutions to the optimal robust stabilization problem using normalized left-coprime factoriza-

tion give

inf [K] _-I I 2 } -I/2K ]l (I-GK) -1 II_= 1-l)[I_I,M] ]1 H (21)

where the subscript H refers to the Hankel norm (which is discussed in appendix A).

3. The maximum robust stability margin is

2 }I/2¢,nax = (%,in) -1 = 1- II [N,M] II H > 0 (22)

4. All optimal controllers are given by equation (19), where U and V satisfy

II [-r_,Ml + II_ = II [N,M] IIH < 1 (23)

Proofs of properties 1 to 4 may be found in either Glover and McFarlane (1989) or McFarlane and

Glover (1990).

Properties 2 and 3 state that for the robust stabilization problem using opthnal normalized

left-coprime factorizations (NLCF), a _ iteration to solve the H_ problem is not necessary. Ttle

value of 7rain, given by the right-hand side of equation (21), can be found through the computation

of the largest Hankel singular value of the stable transfer matrix IN, M] obtained in the initial

NLCF of G. Properties 1 and 4 show that both the optimal (eq. (14)) and suboptimal (eq. (15))

NLCF robust stabilization problems are solved by computing the closest (in the H_ norm sense)

completely unstable (all poles in the open complex right half-plane) rational function V to the

stable RH_ function [-l_l, M]. This computation involves a version of the Nehari extension problem



(Francis1987).By using , U andV in RHo_ can be constructed for use with equation (19)

to form the compensator K. State-variable realizations for the suboptimal problem with 3' > _/min

can be found in Glover and McFarlane (1989) or McFarlane and Glover (1990). The theoretical

approach to solve the optimal problem with 7 -- ?rain can be found in Glover (1984). Algorithms

for constructing state-variable realizations of the compensator K for both (optimal and suboptimal)

problems are collected in appendix B of this paper.

Note that the results obtained from application of the foregoing robust stabilization theory can

be conservative. The approach of analyzing perturbations (Ap) only in terms of their Hoo norm

bounds rather than taking advantage of any known internal structure is fundamentally conservative

by nature (Maciejowski 1989). Known structural properties of perturbations may be incorporated

by using structured singular value techniques such as those implemented by Balas et al. (1991). In

addition, a feedback controller K may well stabilize G and GA either for some particular structured

Ap such that It AP ll_ > emax or for all structured AP terms within a subset of II Ap IIoc <_ emax

containing Ap ___0 while not satisfying the more restrictive condition of simultaneously stabilizing

all elements of GA for II AP ]loc _< emax.

Loop-Shaping Procedure Within the NLCF Robust Stabilization Structure

Because G = M-1N is a normalized left-coprime factorization, we can write

[ l(i 1 [i
[K(I-GK) -1 K(I-GK)-IG]= II [ (I-GK) -1 (I-GK)-IG Iloc <_

(24)

Thus, for either the optimal or suboptimal versions of the NLCF robust stabilization problem, the

satisfaction of equation (18) for _ > %sin also implies that (Safonov and Chiang 1988)

II K(I- GK) -1 [[oo _< 7 (25)

and

II (I-GK) -1 IIoc -< 7

It K(I- GK)-lG IIo_ <- Y

(26)

(27)

II (I- GK)-IG IIoc <_ 7 (28)

The significance of the individual transfer function matrices used in equations (25) to (28) may be

seen from analyzing the feedback control loop in figure 2. The system G is subject to exogenous

inputs in the form of reference commands or actuator noise (_), disturbances reflected to the output

(d), and measurement noise (7/). From figure 2 we can derive

y(s) = (I - GK)-IGK _/(s) + (I - GK)-IG _(s) + (I - GK) -1 d(s) (29)

u(s) = K(I - GK) -1 [d(s) + rl(s)] + (I - KG) -l _(s) (30)

u(s) - _(s) = K(I - GK) -1 [d(s) + v/(s)] + g(I - GK)-IG _(s) (31)

In equations (29) to (31) the standard notation in writing f(s) to represent the Laplace transforma-

tion of f(t) has been used. Equations (29) to (30) reflect the well-known inherent trade-off between

attenuation of disturbances (d) and filtering out measurement and/or actuator noise (v/,_). Be-

cause the sensitivity ((I-GK) -1) and complementary sensitivity ((I-GK)-I(-GK))transfer

6



function matrices are related by

(I- GK) -1 + (I- GK) -1 (-GK) -- I (32)

both cannot be kept small over the same frequency range. Normally, the disturbances are assumed to

be large in magnitude only over a low-frequency range, and actuator and sensor noise are appreciable

only over a complementary high-frequency range. The compensator K is typically designed to cause

II (I - GK) -1 Iloc to be small over low-frequency ranges and II (I - GK)-IGK lice to be small over

high-frequency ranges.

The NLCF robust stabilization compensators cause equations (25) to (28) to be satisfied over

the entire frequency range, whereby the output y may be subject to any high-frequency noise. Such

design difficulties are normally addressed through frequency-dependent weighting matrices applied

directly to the sensitivity and complementary sensitivity matrices before compensator design. Only

a special class of weighting matrices are shown to be allowed if the exact-solution advantage of the

NLCF robust stabilization problem is to be preserved (McFarlane and Glover 1990).

Let Wl(s) and W2(s) be system precompensator and postcompensator matrices, respectively,

and define an augmented plant GA(S) by

GA(S) ----W2(s) G(s) Wl(8) (33)

Performing an NLCF robust stabilization design with G replaced by G A yields a dynamic com-

pensator KA(S ) that robustly stabilizes G A. Figure 3(a) gives a block diagram illustrating this

loop-shaping procedure. Simple block manipulation yields figure 3(b), which shows that the corre-

sponding compensator K to be applied to the unshaped plant G is

K(s) = Wl(s ) KA(S ) W2(s) (34)

We then have

(I- GAKA)-I[I, GA] II_c

inf IWllK(I - GK) -lw-1 WI-IK(I - GK)-IGW1 ]
---- K II [ W2(I _ GK)_Iw21 W2(I - GK)-IGW1 lice (35)

which indicates the weighting configuration that can be applied to the elements of equation (24)

if the exact-solution structure is to be preserved. In general, if other weighting configurations are

desired, the normal "y iteration procedure is required.

The introduction of dynamic weighting matrices always increases the order of the compensator.

Let n be the order of a minimal realization of G(s), nl be the order of Wl(s), and n2 be the order

of W2(s). Given state-variable realizations for Wl(s),W2(s), and KA(s), repeated application of

equation (A5) yields a state-variable realization for K(s). The order of the realization for K(s) will

be < n + 2(hi + n2) after elimination of any uncontrollable and unobservable modes. Lower order

compensators can be obtained through application of compensator order-reduction methods such as

that described by Anderson and Liu (1989). However, compensator order-reduction methods should

be used with caution because they can attenuate robust stability.

Stability Robustness to Unmodeled Dynamics

In flexible space structures, perturbations in the form of unmodeled dynamics occur naturally in
the additive form (eq. (1)). A direct relationship does not seem to exist in defining [AI_I, AM] as a



functionof agivenadditiveAG in equation (1). Setting

GA = M-IIN + AG = (M + AM)-I(N + bIN)

yields

For small [[ AMAG IIoc, equation (37) becomes

for which a solution is

[AI_, AM] _- M AG(Im + G*G)-I(Im,-G*)

Then, robust stability is preserved if

II _ A(_(Im -_- (_*(_)-l(Irn,(_*) II_ < {[max

(36)

(37)

(38)

(39)

for s = jw and w e [0, oc).

In figure 2, let

(42)

and

Then, state-variable realizations for the transfer matrices in equations (29) to (31) can be formed,

wherein each has the same system matrix given by

[ A + B(I - DcD)-IDcC B(I-DcD)-Icc ] (44)Ad = Bc(I - DDc)-IC Ac + BcD(I - DcD)-ICc

An eigenvalue analysis of Ac/often gives an indication of the effect of the compensator on the open-

loop eigenvalues of A. An eigenvalue analysis of Acl can occasionally give a measure of stability

robustness to additive perturbations when the realization (A, B, C, D) in equation (44) is replaced

by a state-variable realization of GA.

8

or the more conservative sufficient condition for inequality (40)

_[AG(s)]_[K(I-GK)-I(s)] < 1 (41)

ItAG K(I-GK) -1 II_ < 1 (40)

Rigorous use of equation (39) is likely to produce conservative designs. In the application of the

NLCF robust stabilization theory that follows, stability robustness to additive unmodeled dynamics

in the form of equation (1) is incorporated by use of the weighting matrices in equation (34) and is

analyzed through the examination of closed-loop conditions for stability robustness (Francis 1987)



Robust Stabilization of the Phase 0 Evolutionary Model

In this section,thepreviouslydiscussedtheoryandalgorithmsfor the robuststabilizationof a
plant modeledin normalizedleft-coprimefactorizationformareappliedto producecompensators
for thecontrolof a modelof a laboratorystructurethat hasmanyof thecharacteristicsanddesign
difficultiesassociatedwith flexiblespacestructures.Exceptforcertainhigh-ordertransientresponse
simulations,all computationswereperformedusinga 486personalcomputeremployingthe 386
MATLABTM computational environment in Anon. (1990). Use was also made of software from the

MATLAB Control System Toolbox (Little and Laub 1986) and Robust-Control Toolbox (Chiang

and Safonov 1988). Balanced realizations were computed by using the algorithm based on Singular

Value Decomposition described by Laub et al. (1987). The Hoc norms were calculated by using the

bisection algorithm of Boyd, Balakrishnan, and Kabamba (1989).

Description of Phase 0 Model

The Control-Structures Interaction (CSI) Evolutionary Model is a laboratory testbed concept in

which a sequence of testbeds is evolved with each new facility having more challenging dynamics

and control characteristics than the previous one. The testbeds are to be designed and constructed

at the Langley Research Center for the experimental validation of control techniques and integrated

design methodology developed under the CSI program at Langley (Newsom et al. 1990). The phase 0

model was the first testbed to be constructed under this program, but, unfortunately, the phase 0

model is no longer in existence at Langley. However, many useful studies were performed using the

phase 0 model (for example, see Lira, Maghami, and Joshi (1992); Maghami, Joshi, and Armstrong

(1993); Lira and Balas (1992), and its data base has been archived and is still available for this and

future studies. A schematic of the phase 0 structure is shown in figure 4, and a detailed description

can be found in Belvin et al. (1991).

The phase 0 structure consisted of two vertical towers and two horizontal booms attached to a

central 62-bay-truss main section with each,bay being a 10-in. cube. (See fig. 4.) The structure

was suspended from the laboratory ceiling by springs and two long cables designed to minimize the

interaction between the suspension and the structural modes. A laser source was mounted at the top

of the taller vertical tower, and a 16-ft reflector with a mirrored surface was mounted on the shorter

tower. The laser beam was reflected by the mirrored surface onto a detector surface 660 in. above the

reflector. The total structural weight was 741 lb. Eight proportional bidirectional gas thrusters (air

jets) provided the input force actuation, and eight nearly collocated servo accelerometers provided

output measurements.

Global line-of-sight pointing studies using the laser targeting system have been performed by Lim

and Balas (1992). The present study is directly concerned with only vibration suppression about

a given operating point and does not treat laser targeting as such. However, vibration suppression

of the laser tower modes is a critical part of our design requirements because damping of the laser

tower structure was a troublesome issue in previous laboratory tests.

The phase 0 model had six nonstructural modes (due to suspension) and many significant elastic

modes. The NASTRAN finite element model (Belvin et al. 1991) consisted of 3560 degrees of

freedom. A total of 86 modes with frequencies below 50 Hz were selected as a truth or evaluation

model. For this study, as in previous studies (Lim, Maghami, and Joshi 1992), a reduced-order

model consisting of 25 modes (selected from the 86 modes through a controllability and observability

analysis) was used for the controller design model. Table I shows the frequency range of these

25 modes in hertz. Frequencies of the first six pendulum/suspension modes, brought about by the

cable suspension in a lg environment, range from 0.147 to 0.874 Hz. The first two elastic modes

(7 and 8) are truss beam bending in the XY- and XZ-planes (defined in fig. 4) with frequencies of

1.474 Hz and 1.738 Hz, respectively. A uniform damping ratio of 0.5 percent is assumed for all the
modes.
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By usingdata from the finite elementanalysis,a dynamicmathematicalmodelin the modal
coordinatesystemcanbeconstructed.A 50th-orderstate-variablerealizationof this modelin
(block)phase-canonicalformwill appearas(A f, Bf, C f, Dr) where

[ i] [01Af = __2 __ Bf = _T Cf =[0,_]Af Df =_r (45)

with

n = diag(tal, w2, .-., w25) (46)

= diag(2_lcal, 2_2w2 .... , 2425w25) (47)

and @ is an 8 × 25 matrix of mode shapes obtained from a finite element analysis (Belvin et al.

1991). In equations (46) and (47), 0Ji denotes frequency and _i denotes a damping ratio of 0.005

for i = 1,..., 25. Eigenvalues of Af are given in table I. Because the damping ratios are small, the

frequencies in radians per second are closely approximated by the imaginary parts of the eigenvalues.

Figure 5 shows an open-loop frequency response plot of the singular value bounds of the transfer

matrix GI defined by the (A f, B f, C f, Dr) system.

In flexible structures, higher frequency modes are more difficult to measure and compute

accurately. For the phase 0 structure, the finite element model provided reasonably accurate natural

frequency and damping values for modes below 2 Hz. However, higher frequency modes, beginning

with the 10th mode at 2.301 Hz, are not accurately known (Lim and Balas 1992). In this design,

only modes with frequencies up to 14 rad/sec are used to form the compensator design model, and

modes with higher frequencies are used to represent unmodeled dynamics. Therefore, modes above

mode 9 are truncated from the 25-mode model and are accounted for as an additive uncertainty in

the design process. The matrix Gf now appears as in equation (1) with

GA = Gf = G + AG (48)

G = C(sIls - A)-IB + D (49)

and

AG = Ct(sI32 - At)-lBt + Dt (50)

The realizations (A, B, C, D) and (At, Bt, Ct, Dr) are obtained by collecting and rearranging

appropriate rows and columns of (A/, B f, C f, D/). Numerical data for G and AG are given in

appendix C, and figure 6 shows individual frequency response plots for G and AG.

Design Objectives

The objective of the control system design is to increase the damping of all the pseudo rigid-body

and structural modes of the design model G. The designs must also possess stability robustness with

respect to unmodeled structural modes, of which AG from equation (50) is taken as a representativ(,

sample, and, if possible, possess stability robustness to parametric uncertainties such as errors

expected in frequency, damping, and mode shapes in the design model.

Loop-Shaping Procedures

By using the numerical data for the 18th-order system (A, B, C, D) found in appendix C, th(_

construction given by equations (A18) to (A22) leads to a state-variable realization for [N, M] with

a Hurwitz system matrix. Computing the Hankel norm of IN, M], as outlined in appendix A, gives

11 [N, M] IIH = 0.8972, whereby, from equation (22), _max ---- 0.4417 and _'min = 1/¢max = 2.264.

An optimal compensator (using eq. (B16) with r = 1) and a central suboptimal compensator (using

eq. (B28) with e = 0.9emax) were obtained following the algorithms in appendix B. Frequency
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responseplotsfor thecompensatorsareshownin figure7. Both compensators, when applied to G

in the feedback fashion of figure 2, enhanced the stability of G but grossly violated the condition

stated in inequality (40) with AG given by equation (50). Violation of inequality (40) indicates that

the compensator

u(s) -- K(s) y(s) (51)

applied to GA, given by equation (48), has the potential of a destabilizing spillover effect (Joshi

1989) on the AG dynamics. The failure to satisfy the condition in inequality (40) was primarily

caused by the lack of free parameters for adjustment in the algorithms and the fact that G(s) is not

strictly proper, in which case both optimal and suboptimal compensators will not be strictly proper

as can be seen from figure 7.

The spillover problem could be resolved through incorporation of loop-shaping functions of the

form given in equation (33). The weighting functions employed were

Wl(S) = I8 (52)

and

w2(s) = w(s) = f(_) I8

where the scalar function f(s) is given by

(53)

y(s) =k/(_+a) _ (54)

The positive real parameters a,i, and k are adjusted from observation of the condition given by

inequality (41) with the compensator in equation (34). The parameter a is chosen such that a plot

of the inverse of #[K(I - GK)-I(jw)] versus w E [0, _c) breaks upward before w = 14 rad/sec, the

approximate frequency at which the AG dynamics become predominant. The parameter i roughly

controls the slope of the upward break and was taken as i = 1 or 2. The quantity k adjusts the

magnitude of W(s) and ranges between 0.08 and 4.0 in the following discussion. Minimal-order

state-variable realizations for W(s) for i = 1 are

w: tc ) D >A:
(55)

where
/0 0 0 ... 0 0

0 0 0 ... 0 1

: : : : :

0 1 0 ... 0 0

1 0 0 ... 0 0

1

0

0

0 8x8

(56)

and, for i = 2, are

where

W

,2Ta(1)
-2ai8 -_ "-'w

B_ ) 08x8

(57)

(58)
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and

(59)

D(_) = 08×8 (61)

Realizationsof equations(55) to (61)wereobtainedfrom the Control System Toolbox function
entitled "tf2ss.m."

Increasing the parameter k not only moves the closed-loop eigenvalues of the controllable modes

of the design model farther into the complex left-hand plane but also increases the potential of

destabilizing spillover into the modes of At. Observing the real parts of modes 10 and 11 shows that

these modes need stability augmentation as much as modes 1 to 9. However, of the first 11 modes,

modes 10 and 11 are the least controllable (with mode 11 more controllable than mode 10). A

Hankel singular value analysis of the 11-mode model yields the mode numbers ordered in decreasing

controllability and/or observability as 8, 7, 3, 2/9 (tie), 6, 4, 1, 5, 11, and 10. Including modes

10 and 11 in the design model and increasing k to provide the added stability invariably produces

compensators (optimal and suboptimal) that violate conditions given in inequalites (40) and (41).

By using the methodology and weighting described herein, modes 10 and 11 will necessarily remain

relatively unchanged when stability to additive perturbations is a design requirement.

Robustness to Structured Perturbations

For modes 1 to 9 below 2 Hz, the accuracy of values of natural frequency and damping ratio are

within 1 percent and 10 percent, respectively. (See Lim and Balas 1992.) In order to evaluate

the compensators for perturbations in frequencies and damping ratios within these ranges, the

frequencies wi and damping ratios _i in the A matrix of the 9-mode design model were replaced

by perturbed values (wp)i and (@)i given, respectively, by

(tOp) i = czi + (_W)i_oi (62)

and

(@)i = _i + (_)i_i (63)

for i = 1,...,9. In equations (62) and (63), (_w)i and (5_)i are random variables uniformly

distributed within [-0.01, 0.01] and [-0.1, 0.1], respectively. The new perturbed system matrix

is denoted by A& If G(s) is given by equation (49), the transfer matrix for the perturbed system is
given by

G_(s) = C5(sI18 - Aa)-IB + D (64)

where

to reflect acceleration measurements.

With

and

C8 = CA-1A_ (65)

GA(S ) = W2(s ) G(s) Wl(s )

GbA(8 ) = W2(8) G6(s ) Wl(8 )

normalized left-coprime factors are found such that

(66)

(67)

GA(S ) ----(_/[A)-INA (68)
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and

Define

where

and

If [IAP llo¢ < _A

stabilizing G(s).

GSA (s) = (MSA)-ll_I_A (69)

AP = [AI_IA,-AMA] (70)

AMA = h_5 A - MA (71)

ANA = N6A -- NA (72)

CA,max, the compensators also stabilize the perturbed system in addition to

Compensator Design

Optimal compensator. The parameters (k,i,a) in equation (54) were adjusted to meet the

design objectives. Because the optimal compensator was not strictly proper, i --- 2 was found to

provide faster roll-off and to best allow the satisfaction of conditions in inequalities (40) and (41).

A representative optimal compensator used (k,i,a) = (0.1, 2, 0.5). After scaling each channel

of G by 0.1/(s + 0.5) 2, the result was _A,max : 0.6749. Figure 8 shows the scaled version

of G(s), and figures 9 and 10 show singular value bounds for the corresponding compensators

KA(S) and K(s), respectively. Table II gives the eigenvalues of the Hurwitz system matrix from

a state-variable realization of KA(S ). The order of the compensator KA is 33 (corresponding to

n = 18, nl -- 0, n2 = 16, r = 1, and i = 2), whereby the final compensator K is on the order of 49.

Over 2000 realizations of equations (62) and (63) were computed for the optimal compensator and

corresponding AP transfer matrices (given by eq. (70)) tested for satisfaction of [[ AP [[oc < CA,max.

No violations were encountered. Values of [[ AP [Ioc ranged between 0.1728 and 0.5888 with a mean

of 0.4627, and the standard deviation was 0.0726. Satisfaction of conditions in inequalities (40)

and (41) is depicted in figure 11, which indicates that mode 20 (the laser tower mode) at 41.9 rad/sec

(6.7 Hz) is the mode most likely to experience destabilizing spillover. (In this report, frequency is

expressed in radians per second or Hertz (or in both) for comparison purposes with the literature.)

This property has also been observed experimentally in previous studies. The peak value (Hoc norm)

of the curve in figure 1 l(b) is 0.024 at 41.9 rad/sec, which indicates an additive stability robustness

margin of about 97 percent.

This ultraconservative margin for additive stability robustness was forced by the desire to also

have a compensator that guarantees stability robustness to expected parametric uncertainties in

frequencies and damping ratios. If k is increased to 2.0 for the same values of i and a, the peak

value of the curve in the corresponding figure lllb ) is 0.570, which indicates a more reasonable

margin of 43 percent. However, k = 2.0 produced CA,max --_ 0.4856, and this reduced value of CA,max

leads to the occurrence of violations greater than 40 percent of the time in the random tests for

]] AP [Ioc < CA,max. For fixed values of i and a, decreasing k increases _A,max and decreases

[I AP [Ioc. A value of k allowing a sufficiently wide "gap" between the two quantities is required

when specific ranges of parametric variations are considered.

A state-variable realization (Ac, Be, Cc, De) of the optimal compensator K was formed, and the

controller was applied (in the manner of fig. 2) to the 50th-order system GA. The closed-loop system

matrix appears as A d in equation (44), but with (A, B, C, D) replaced by (Af,Bf, Cf,D/).

When comparing the imaginary parts of the eigenvalues of Acl with the imaginary parts of the

open-loop eigenvalues (given in table I), certain A d eigenvalues can be identified as the closed-loop

modifications of the eigenvalues of AI. These eigenvalues and corresponding damping ratios (which
are correlated with open-loop mode numbers) are given in table III. The compensator leaves the
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open-loopeigenvaluesessentiallyunchangedexceptfor modes1to 3. Optimalcompensatorswith
betterstabilityaugmentationcanbeobtainedat theexpenseofviolationsin robuststabilitybecause
of parametricvariationsin frequenciesanddampingratiosof thedesignmodel.

Suboptimal compensators. Suboptimal compensators computed from strictly proper systems

GA(S ) are strictly proper, whereby lower order weighting functions (other than those used in

the foregoing optimal compensator studies) can be employed without difficulty in satisfying the

additive robustness conditions. Suboptimal compensator studies were performed using i = 1 and

eA = 0.9eA,ma x from which a representative result had (k,i,a) = (0.5, 1,0.1). After scaling each

channel of G by 0.5/(s + 0.1), the result was found to be eA,ma x = 0.667. Figure 12 shows

the scaled version of G, and figures 13 and 14 show singular value bounds for the compensators

KA(S ) and K(s), respectively. Table IV gives the eigenvalues of the Hurwitz system matrix from

a state variable realization of KA(S ). The order of the compensator K A is 26 (corresponding to

n -- 18, nl = 0, n2 = 8, and i = 1), whereby the order of the final compensator K is 34.

Again, over 2000 realizations of equations (62) and (63) were computed for the suboptimal

compensator and the corresponding AP transfer matrices tested for satisfaction of I[ Ap [[_ <

CA,max with no violations encountered. Values of I[ Ap [Ic_ ranged between 0.0561 and 0.5595 with

a mean of 0.2798 and a standard deviation of 0.0907. The expected variations in frequency and

damping ratio of 1 percent and 10 percent, respectively, are apparently close to the upper bounds

for robust stability for k = 0.5. Increasing these variations to 1.5 percent and 15 percent causes

violations about 6 percent of the time.

Satisfaction of conditions in inequalities (40) and (41) is shown in figure 15. An interesting note

is that figure 15(a) indicates that mode 20 (the same mode as that indicated by fig. 11) is the mode

most likely to be troublesome, whereas figure 15(b) flags mode 15 at 27.6 rad/sec. The peak value

of the curve in figure 15(b) is 0.562, which indicates an additive stability robustness margin of about

44 percent.

The suboptimal compensator was also applied to the control of the 50th-order system GA, and

an eigenvalue analysis was performed on the resulting A d matrix. The results are given in table V.

The fact that the real parts of the eigenvalues for modes 10 to 25 are not significantly changed from

the corresponding values of table I indicates that the additive robustness conditions are satisfied.

Modes 3 to 9 all have enhanced stability except for possibly mode 5. The eigenvalue data give two

eigenvalues with imaginary parts close to the imaginary part of open-loop mode 5. Both are shown

in table V. The entry with the largest real part is possibly the closed-loop eigenvalue of mode 5
because this mode is the least controllable and observable of the first nine modes. No correlation

could be made for modes 1 and 2.

For comparative purposes, a calculation was performed with (k, i, a) = (0.5, 1,0.1) and e A = O.

Compensator equations for this calculation are given by the 3' --' oc case found at the end of

appendix B. Figures 16 to 18 and tables VI and VII provide the same information as previously

provided for the optimal and other suboptimal compensators. Figure 18 indicates that robustness to

additive perturbations measured by conditions in inequalities (40) and (41) is somewhat improved.

The peak value of the curve in figure 18(b) is 0.184 at 27.6 rad/sec with a robustness stability margin

of about 81 percent.

For fixed values of the parameters (k, i, a) as eA increased from 0 toward eA,ma x within the

suboptimal structure, the magnitudes of the imaginary parts of the eigenvalues of a state-variable

realization of KA(S ) generally decreased, whereas the magnitudes of the real parts generally

increased. Thus, for small values of CA, a relatively slower compensator was produced; this caused

smaller values on the left side of inequality (41) which, in turn, created larger values of additive

robustness stability margin.
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Evaluation model simulations. The four compensators discussed were applied to the control

of the full 86-mode-evaluation phase 0 model subjected to a transient input disturbance. Although

not directly considered in the robust stability design process, this application gave an indication

of the relative merit of the compensators in the area of closed-loop performance. The simuiation

consisted of (1) applying an excitation input sequence for the first 9 sec, (2) allowing 1 sec of free

decay, and then (3) applying a controller at the 10-see mark for a total duration of 30 sec. The

input sequence consisted of harmonic forces designed to excite two pendulum modes (1 and 3) and

the first two bending modes (7 and 8) using a single actuator for each mode. Specifically, actuators

1 (mode 7), 2 (mode 8), 6 (mode 3), and 7 (mode 1) were excited with signals of 1.474 Hz, 1.738 Hz,

0.155 Hz, and 0.147 Hz, respectively. No actuator dynamics were considered.

The compensators were discretized at a sampling rate of 133 Hz. The input sequence and

sampling rate are the same as those employed by Lira, Maghami, and Joshi (1992) in their

experimental investigation using the actual phase 0 structure. The format for the presentation

of the results herein parallels that of the experimental study. Figures 19 to 34 show input and

output responses for collocated thrusters and accelerometers 7 and 8 (laser tower) for the optimal

and suboptimal controllers. The best performance is obtained by the suboptimal compensator with

eA,ma x = 0.667 followed closely by the suboptimal compensator with e A = O. The optimal (2.0, 2,

0.5) compensator had marginal performance characteristics, and the highly conservative robu._t (0.1,

2, 0.5) compensator had almost no effect. The suboptimal responses compare favorably with those

of Lira et al. which were designed with performance issues in mind.

Concluding Remarks

In this report the application of a robust stabilization methodology to the control of a simulated

model of an actual laboratory apparatus has been considered. The apparatus, known as the Control-

Structures Interaction (CSI) Pha,se 0 Evolutionary Model, was built at the Langley Research Center

for the purpose of investigating some of the problems and solution approaches involved in the control

of flexible space structures.

With the view that system uncertainties are perturbations about a nonfinal design model, a single

robustly stabilizing compensator was sought that not only enhanced the stability of the nominal

plant but, in addition, stabilized all systems within some neighborhood of the plant generated

by the perturbations. The computation of the largest neighborhood around a given design plant

for which a single controller produces closed-loop stability was shown to be fornmlated as an

H_c control problem. Several formulations of the H_c problem were possible depending on the

character of the perturbation space. A formulation based on the Glover-McFarlane theory (1989)

was employed wherein descriptions of the normalized coprime factor plant were used and tile plant

perturbations were defined as additive modifications to the coprime factors. An attractive feature

of the normalized coprime factorization approach is that it leads to a closed-form expression for

the maximum perturl)ation radius. The maxinmm radius can be directly computed in terms of the

open-loop design model, thus allowing optimal and suboptimal robust compensators to be fimnd

without the usual 7 iteration of the H_ design.

Computational algorithms for both the optimal and suboptinml versions of the McFarlane-Glover

theory (1990) were smnmarized, and representative compensators were conlputed and analyzed

for the control of the simulated Langley phase 0 structure. Through incorporation of weighting

fimctions, the compensators were inade to roll off in such a way a,s to cause the closed-loop system

to be robust to additive umnodeled dynamics. A Monte Carlo approach was employed to tes! the

robust stability of tile compensators against expected structured parametric perturbations in the

compensator design model. Even though these calculations offer no mathematical proof, they do

give a degree of confidence that the compensators robustly stabilize the nominal system for expected

perturbations in frequencies and damping ratios of tile system matrix of the design model. Tilt,

compensators were tested through application to a full-order evaluation model.
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Resultsfromthe studyindicate that when requiring the compensators to satisfy all design ob-

jectives of stability augmentation, robust stability to unmodeled dynamics appearing as additive

perturbations, and robustness to structured parametric variations, the optimal robust compensators

can be overly conservative with marginal stability augmentation, whereas the suboptimal compen-

sators are not. For the class of flexible structure applications considered, the suboptimal version

of the McFarlane-Glover theory provides a viable approach for the computation of low-authority

controllers providing robust stability augmentation for variations in design model parameters and

additive unmodeled dynamics. These controllers may need to be supplemented with high-authority

loops to provide additional performance.

NASA Langley Research Center
Hampton, VA 23681-0001
March 29, 1993
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Appendix A

Nomenclature and Definitions

Thisappendixoffersacompilationofcertainfundamentalresultsfromlinearsystemstheorythat
areemployedin thebodyof thisreport.

State-Variable and Transfer Matrix Representations

Assumethat a dynamicsystemis modeledby a real, linear,finite-dimensional,time-invariant,
continuoussetof ordinarydifferentialequationswritten in vector-matrixformas

where,for t E [0, oc),

x(t) _ R"

y(t) E R p

u(t) _/e"

A E R" ×"

B E R" ×'';

C E R p×"

D E R p×''

x(t) = A x(t) + B u(t)

y(t) = C x(t) + D u(t)

state vector

output vector

control vector

system matrix

control-effectiveness matrix

output matrix

control-feedthrough matrix

The transfer p × m flmction matrix (G(s)) for the (A, B, C, D) system is given for s E C by

A,1B+D::[: :]
If D is square and nonsingular.

If

G 1(,_)=
BD-I

D l

OI=[AISl]C1 Dt

then state-variable realizations (not necessarily mininml) for the ca.scaded system GIG2 are
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GIG2 =

C1

B1C2 B1D2

A2 B2

D1C2 D1D2

A2 0 B2
= B1C2 A1 B1D2 (A5)

D1 C2C1 D1D2

where 0 represents a null matrix of appropriate size.

When A is Hurwitz, that is, has eigenvalues only in the open, complex left half-plane, the

reachability gramian (P) and the observability gramian (Q) are given (Kwakernaak and Sivan 1972)

as the unique symmetric nonnegative definite solutions to the Lyapunov equations

AP + PA T + BB T = 0 (A6)

ATQ + QA + cTc = 0 (A7)

If (A, B) and (C, A) are, respectively, completely controllable and completely observable, then P

and Q are symmetric and positive definite.

Denote the ith eigenvalue of a square matrix E by Ai(E). When Re[A/(A)] < 0 for i = 1, 2 ..., n,

the Hankel singular values of the transfer function matrix G(s) are defined as (Glover 1984)

ai[G(s)l : {Ai(PQ)} 1/2 (A8)

where P and Q satisfy equations (A6) and (A7), respectively, and, by convention,

ai[G(s)] _> ai+l[G(s)] (A9)

for i:= 1,2,.. ,n - 1. The Hankel norm of G(s), denoted by ]l G IIH, is defined as

II G IIH = al[G(s)] (A10)

which is the largest Hankel singular value of G(s). The eigenvalues of the product PQ are invariant

under coordinate transformations oil x(t) in equations (A1) and (A2). When A is Hurwitz, a
particular coordinate transforination called a balancing transformation exists (Moore 1981) such
that

P = Q = diag(al, a2 .... , a,,) (All)

Computational aspects of balancing transformations are discussed in Laub et al. (1987), and
applications to too(tel-order reduction are surveyed in Anderson and Liu (1989).

Let RL_ denote the space of all real-rational proper transfer flmction matrices that have no

poles on the iinaginary (s = jw) axis of the comt)lex plane and RH_c C RLoc denote tile subset of

all asyInt)totically stable (no poles in the closed right half-t)lane ) proper transfer function matrices.
With G(s) E RSvc, the S_c norm of G(s) is

where _ denotes the largest singular value (not the Hankel singular value) of the complex matrix

G(j,,,) for a given real _. For a discussion of matrix singular values and their applications in linear

systems theory, see Golub and Van Loan (1989) and Klema and Laub (1980). Computational aspects
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ofHoc norms are discussed in Boyd, Balakrishnan, and Kabamba (1989) and Boyd and Balakrishnan
(1990).

Coprime Factor Representations

In addition to state-variable and transfer-function matrix representations, all time-invariant linear

systems have coprime factor representations (Vidyasagar 1985). Suppose that M E RHec and

E RH_c have the same number of rows. Then M and l_l are left coprime if, and only if, UeRH_c

and _reRH_c exist such that

!VI(s)_g(s) + l_l(s) El(s) = Ip (A13)

for all s • C. Equivalently, M and l_l are left coprime if, and only if, Jill, M] has a right inverse

in RH_c. Any (stable or not) transfer function matrix G(s) can be represented in terms of a pair

of asymptotically stable, real-rational, proper transfer function matrices that are left coprime. This

representation, termed a left-coprime factorization of G(s), is given by

G(,) = (A14)

where M • RH_c is square with det(hJ) g: 0, and i_l • RH_c and M are left. coprimc. A particular

left-coprime factorization, called a normalized left-eoprime factorization (NLCF), is one in which

_l(s)l_l*(s) + 1VI(s) M*(s) = Ip (A15)

for all s E C where

l_l*(s) = l_lr(-s) (A16)

M*(s) = _.Ir(-s) (A17)

A state-variable realization for a normalized left-eoprime factorization can be formed from a minimal

(A, B, C, D) realization of G(s) (Vidyasagar 1988). First, solve the generalized filter algebraic
Riccati equation (GFARE)

(A - BS iDrC)Z + Z(A - BS 1DTc)T -- ZCTR-1CZ + BS 1BT = 0 (A18)

for the unique synmmtric positive definite matrix Z where

S = I., + DTD A19)

Then with

and

R = Ip + DD 7" A20)

H = -(ZC T + BDT)R -I A21)

F
]A + HC B + HD H (A22)

[R-1/2C R-1/2D R 1/2

1_1and /_ form a normalized left-eoprime factorization of G(s) constructed as in equation (A14).

Similar to left-coprime factorizations, all rational transfer matrices also have right-col)rime

factorizations (Vidyasagar 1985). Suppose that M • RHrv and N E Rttx have lhe same number of

cohmms. Then, M and N are defined to be right coprime if, and only if, U E Rtf_c and V • RHx
exist such that

V(.s)M(s) + U(s)N(s) = I,,, (A23)
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forallsEC. Thatis, thematrix IN] hasaleftinverseinRH_c.ThetransfermatrixG(s) issaid
to havea right-coprimefactorizationwhen

G(s) = NM -1 (A24)

where M E RHo_ is square with det(M) _ 0, and N E RH_ and M are right coprime. A particular

right-coprime factorization, called a normalized right-coprime factorization (NRCF), is one in which

M*(s) M(s) + N*(s) N(s) =Im (A25)

for s C C, where N* and M* are as defined by equations (A16) and (A17), respectively. For a

minimal (A, B, C, D) realization of G(s), a state-variable realization for an NRCF of G(s) is given

by
A + BF BS -1/2

VMN]= C+ DF DS -I/2 (A26)
L--.I

F S -1/2

where S and R are given by equations (A19) and (A20), respectively,

F = -S-I (DTC + BTx) (A27)

and X is the unique symmetric positive definite solution of the generalized control algebraic Riccati

equation (GCARE)

(A - BS-1DTC)TX + X(A - BS-lDTc) - XBS-1BTx + CTR-1C = 0 (A28)

Both the NLCF and NRCF realizations are nlinimal given a minimal (A, B, C, D) realization

(Meyer 1988).
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Appendix B

Algorithms for the NLCF Robust Stabilization Problems

In this section, computational procedures are presented for determining state-variable realizations

of the compensators resulting from the optimal (7 = 7min) and suboptimal ('y > 7min) NLCF robust

stabilization problems.

Optimal Compensator

From equation (23), construction of the optimal compensator involves the approximation of a

function [-l_l, _I] E RHzc by a completely unstable (all poles in the open complex right half-plane)

'rational transfer function . This type of problem is referred to as a Nehari extension problem.

Its solution, as has been shown in section 6 of Glover (1984), can be constructed through the use of

balanced realizations and Hankel norm approximations. In this paper, the version of Glover's theory

found in section 6.6.2 of Maciejowski (1989) is employed.

If G is a p x m matrix, then [-1_, _1] will be p x (p+m). Place an m x (p+m) null matrix beneath

[-N, M] such that the resulting augmented square matrix is of size fi = m + p. A state-variable
realization for the augmented matrix can be found through the use of equations (A18) to (A22).

The realization will have a system matrix with the same size as the system of a minimum realization

of G, which is denoted by n. Let (A, B, C, D) be a balanced realization of the augmented matrix
realization. The balanced realization will be such that

/i,l!_ +IEA T + griT = 0 (B1)

and
hrr, + + = o (B2)

where

I_= [ _llr0 Ig]0 ] (B3)

_1 = diag(crr+l, C_r+2,-.-, c%) (B4)

and r _> 1 is the multiplicity of 6r 1. In equations (B3) an(t (B4), the Hankel singular vahms of

[-N, M] are ordered such that

ai _> o'i+1 (i = 1,2,...,n- 1)

and

al =ll [-N, M] l[g = II [N, M] JIB

Unique solutions to equations (B1) and (B2) exist because A is Hurwitz.

Next, partition A., B, and I_ conformally with Z to obtain

A21 A22

(B5)

(B6)

and

Define

[.1]fi= fi2

F = Y]_I -- °'lIT_-r

(B7)

{B8)

(B9)
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andfind0 suchthat _T = ih and
nl : -cTLI (B10)

The matrix LI may be found as follows. Let 1_1T have singular value decomposition UI_V T.

From equations (BI), (B2), and the construction of _, we have B1 fT = cTc1, whereby UI_V T

is a singular value decomposition of -B1. Then, a solution of equation (B10) is

LI = Vl VT (Bll)

Thereafter. construct

_= -1 2-7" _1 _T__,I fT)r (O-lA22 + _1A22_ 1 -

b : -I5 + o10

(B12)

(B13)

(B14)

(B15)

Glover 1984) shows that after deleting the lower m rows of 1_ and 1) (corresponding to

those initially added), a state-variable realization for in equation (23) is (A, B, C, D).

the definition in equation (A16)indicates that the corresponding realization for [vUIApplying

is (--J_k T, __T, fiT, ]_T). In other words

[U] = __T(sin_r + ,_T)_IeT + _)T (B16)

where

/_T E R (n-r)×(n-r)

fT E R (p+m)x(n-r)

_T C R (n-r)xp

and

[) E R (p+m)xp

The rnatriccs U and V are the upper m × p and lower p x p portions of equation (B16), respectively.

The optimal compensator K is given by equation (19) for which a state-variable realization can be

constructed through application of equations (A4) and (A5).

The system matrix corresponding to a state-variable realization of K will be on the order of

(n - r), where r is the multiplicity of the largest singular value of IN, M]. Here, n is the order of a

minimal realization of IN, M] and also the order of a minimal realization of G. Thus, the optimal

compensator is of a lower order than G. However, even if G is strictly proper, the compensator will

generally only be proper. (See eq. (B15).) If a strictly proper compensator is desired for a strictly
proper G, the suboptimal compensator may be employed.

Suboptimal Compensator

Utilization of the compensator from the previous section always yields

-- = emax = "fmin (B17)
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If onewishesto specifythat "_ > "Tmin such that

1] [K](I-GK)-IM-11]oc<'_ (B18)

a suboptimal version of the optimal NLCF robust stabilization problem can be posed as finding all

compensators that simultaneously stabilize G and satisfy equation (B18).

Let G have state-variable realization (A, B, C, D) and Z and X denote the solutions of
equations (A18) and (A28), respectively. Also let

S =Im + DTD (BI9)

F = --S-I(BTx + DTc) (B20)

and

A c -- A + BF (B21)

Then, as shown in Glover and McFarlane (1989) or McFarlane and Glover (1990), all controllers

satisfying the suboptimal robust stabilization problem for selected

"7 > _min = (1- [1 [1_, 1VII [[2)-1/2 (B22)

are given by

K = (LII_ + L12)(L21@ + L22)-'

where

Llt L12

LL21 L22
AC

= F

C+DF

_72_'lTBS-1/2 ] 72_-TzcTR-1/2
I

8-1/2 II __IDTR_ 1/2
I

I ___IR_I/2DS-1/2 d

R = Ip + DD T

= (,_2 _ 1),/2

Wl = In + (XZ - 72In)

and _ is arbitrary in Rn_c so long as }l _ II_ _ 1.

The central (_ : 0), or lowest order, suboptimal compensator is

(B23)

(B24)

(B25)

(B26)

(B27)

K C _-

A c + 72w1TzcT(c + DF)

BTx
(B28)

Comparing the orders of the optimal and central suboptimal controllers shows that the central

controller always has an order equal to that of the original design model (G), whereas the order of

an optimal compensator is n - r(r >_ 1). The central controller gives a strictly proper compensator
for a strictly proper G, whereas the optimal compensator typically does not.

McFarlane and Glover (1990) show that

2 =--Am_(ZX)1 - _/min (B29)
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wherebyWl of equation(B27)becomessingularas"r --_ 0'min" As "_ --* oo, the central solution

approaches

[ Ac-ZCT(C+DF) -zCT ]BTX-D T

which is easily recognized as a Linear-Quadratic-Gaussian (LQG) compensator construction.
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Appendix C

Numerical Data

Matrices Defining Controller DesignModel

NumericaldataforG -- C(sIl8 -A)-1B + D for equation (49) are given in the following matrices

for (A, B, C, D).

Columns 1 through 6
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

-8.5437E-01 0 0 0 0 0

0 -8.7713E-01 0 0 0 0

0 0 -9.5105E-01 0 0 0

0 0 0 -2.1042E+01 0 0
0 0 0 0 -2.2077E+01 0

0 0 0 0 0 -3.0155E+01

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

Columns 7 through 12
0 0 0 1.0000E+00 0 0

0 0 0 0 1.0000E+00 0

0 0 0 0 0 1.0000E+00

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 -9.2432E-03 0 0

0 0 0 0 -9.3655E-03 0
0 0 0 0 0 -9.7522E-03

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

-8.5712E+01 0 0 0 0 0

0 -1.1927E+02 0 0 0 0
0 0 - 1.3997E+02 0 0 0
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A

Columns 13 through 18
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1.0000E+00 0 0 0 0 0

0 1.0000E+00 0 0 0 0
0 0 1.0000E+00 0 0 0

0 0 0 1.0000E+00 0 0

0 0 0 0 1.0000E+00 0

0 0 0 0 0 1.0000E+00

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

-4.5872E-02 0 0 0 0 0

0 -4.6986E-02 0 0 0 0
0 0 -5.4914E-02 0 0 0

0 0 0 -9.2581E-02 0 0

0 0 0 0 -1.0921E-01 0

0 0 0 0 0 - 1.1831E-01
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B

Columns 1 through 6
0 0
0 0

0 0

0 0

0 0

0 0

0 0

0 0
0 0

0 0

-9.0412E-02 - 1.7503E-03

-7.2842E-01 2.1216E-04

1.1157E+00 -2.6799E-04
-2.3142E-04 - 1.1076E+00

5.9439E-05 -7.5943E-01

-6.8777E-02 2.3805E-03

-9.0841E-01 -9.2293E-04

2.9426E-02 1.2695E+00
9.4147E-01 -4.7622E-02

Columns 7 through 8
0 0

0 0

0 0

0 0

0 0
0 0

0 0

0 0

0 0

7.2043E-01
2.8556E-03

5.9586E-02

-2.7368E-01
3.9825E-03

5.0834E-04

-7.0441E-03

9.5012E-01
-2.2581E-02

-4.6856E-02

-6.2905E-01

5.9095E-01
1.0451E-03

- 1.1842E- 03

1.3185E+00

1.1182E+00
1.6953E-02

3.1281E-01

0

0

0

0

0

0

0
0

0

0

-2.2032E-03

-7.4012E-01
6.2103E-02

- 1.5399E-04

1.9928E-04

-2.5082E-01

4.7562E-01
-2.6966E-02

-9.0573E-01

0

0

0

0

0
0

0

0

0

0

8.6983E-04
1.9792E-04

9.7330E-05

-3.9490E-02

-7.4550E-01

2.0583E-03
4.0256E-03

- 1.0421E+00

4.2744E-02

0

0

0

0

0
0

0

0

0

0
7.2204E-01

2.8522E-03

5.9780E-02

-8.7477E-02

-3.0950E-03
8.2306E-04

9.0757E-04

-3.8239E-01

1.2593E-02

0

0

0

0
0

0

0

0

0
0

7.6707E-02

-7.0804E-01

-8.8555E-01

2.3484E-04
-3.4298E-04

3.0302E-01

-4.3450E-01

1.0193E-02
3.8921E-01
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C

Columns 1 through 6
7.7245E-02

1.4954E-03

1.8823E-03
-7.4315E-04

-6.1689E-01

-6.5536E-02

-6.1551E-01

4.0032E-02

6.3892E-01

- 1.8609E-04
6.4918E-01

- 1.7360E- 04

-2.5017E-03

6.2104E-01
-2.5047E-03

5.5176E-01

Columns 7 through 12
7.7862E+01
7.9107E-02

-4.0767E+01

-3.4504E-01

-7.7790E-02

3.7242E+01
6.0377E-01

-9.5844E+01

-3.5096E+00

-1.5141E+02

3.2162E+00

1.2429E+02

4.5607E+01

-1.2157E+00
- 1.1332E+02

-2.0220E+00

Columns 13 through 18
1.0616E-05

5.0808E-02

7.0638E-06

1.8115E-03
4.0127E-03

- 1.0773E-05

1.2554E-02

-4.7941E-05

-2.7928E-06

3.5683E-02

-9.3634E-06
3.5028E-02

1.4542E-04

1.6115E-05

- 1.8712E-04

5.5641E-05

- 1.0611E+00
2.5487E-04

-5.9063E-02

-9.2566E-05

-5.6854E-02
8.4221E-01

-5.6670E-02

-5.6203E-01

- 1.3178E+02

6.6658E+00

1.2678E+02

-5.9830E+00
- 1.7627E+00

-5.4479E+01

3.1607E+00

-4.3785E+01

3.7768E-03

- 1.3072E-04

1.3774E-02
- 1.1303E-04

-4.5198E-05

- 1.6640E-02

-2.7915E-05
-7.2404E-02

4.8696E-03

2.3307E+01

3.2403E-03
8.3096E-01

1.8407E+00

-4.9416E-03

5.7589E+00

-2.1991E-02

8.3570E-04
1.6178E-05

2.0365E-05

-8.0400E-06

-6.6740E-03
-7.0902E-04

-6.6591E-03

4.3310E-04

8.4102E-02
8.5446E-05

-4.4033E-02

-3.7269E-04

-8.4024E-05

4.0226E-02
6.5215E-04

-1.0352E-01

- 1.3122E-03

1.6766E+01
"4.3995E-03

1.6458E+01

6.8328E-02

7.5719E-03

-8.7921E-02
2.6143E-02

6.8220E-03

- 1.9870E-06

6.9316E-03

- 1.8536E-06

-2.6712E-05
6.6311E-03

-2.6744E-05

5.8914E-03

-3.2136E-03

- 1.3864E-01

2.9450E-03

1.1381E-01

4.1761E-02
-1.1132E-03

- 1.0376E-01

-1.8514E-03

2.0740E+00
-7.1785E-02

7.5636E+00

-6.2069E-02

-2.4820E-02

-9.1377E+00
- 1.5329E-02

-3.9760E+01

- 1.0881E-02

2.6135E-06

-6.0564E-04
-9.4918E-07

-5.8299E-04

8.6361E-03

-5.8109E-04

-5.7631E-03

- 1.1139E- 01

5.6342E-03

1.0716E-01

-5.0570E-03
- 1.4899E-03

-4.6047E-02

2.6716E-03

-3.7009E-02

D

Columns 1 through 6
3.5007E+00

-6.8878E-03

-6.5971E-01
5.6295E-03

-9.1940E-04

2.6140E-01

1.2391E-02

3.1031E-01

-6.8878E-03

3.4174E+00
7.7127E-03

-7.1509E-01

-3.8808E-01

-4.5194E-03

1.5061E+00
8.2638E-03

Columns 7 through 8
1.2391E-02

1.5061E+00

-8.6038E-03

-9.8264E-01
1.8407E-01

4.5186E-03

1.5008E+00

1.2062E-03

3.1031E-01

8.2638E-03

4.1973E-01
3.6531E-03

-8.3024E-04

-4.5921E-02
1.2062E-03

3.8341E+00

-6.5971E-01
7.7127E-03

1.6618E+00

-9.4997E-03

-8.4551E-04
-1.6658E-01

-8.6038E-03

4.1973E-01

5.6295E-03

-7.1509E-01

-9.4997E-03

1.6452E+00
4.0543E-01

4.9757E-03

-9.8264E-01

3.6531E-03

-9.1940E-04

-3.8808E-01

-8.4551E-04

4.0543E-01
6.7897E-01

1.2671E-03

1.8407E-01

-8.3024E-04

2.6140E-01

-4.5194E-03

-1.6658E-01

4.9757E-03
1.2671E-03

1.7236E+00
4.5186E-03

-4.5921E-02
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Matrices Defining Truncated System

Numerical data for AG = Ct(sI32 - At)-lBt + Dt for equation (50) are given in the following

matrices for (At, Bt, Ct, Dr).

At

Columns 1 through 6
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

-2.0909E+02 0 0 0 0 0
0 -3.1809E+02 0 0 0 0

0 0 -6.3630E+02 0 0 0
0 0 0 -6.4186E+02 0 0

0 0 0 0 -6.9828E+02 0

0 0 0 0 0 -7.6148E+02

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
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Columns 7 through 12
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

-1.1948E+03 0 0 0 0 0
0 - 1.5075E+03 0 0 0 0

0 0 - 1.5326E+03 0 0 0

0 0 0 -1.6531E+03 0 0
0 0 0 0 -1.7563E+03 0

0 0 0 0 0 -2.1457E+03

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
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Columns13through18 0
0 0 0 0 1.0000E÷00
0 0 0 0 0 1.0000E÷00
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 - 1.4460E-01 0
0 0 0 0 0 - 1.7835E-01
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

-2.7152E+03 0 0 0 0 0
0 -3.1739E+03 0 0 0 0
0 0 -6.1546E+03 0 0 0
0 0 0 -1.1213E+04 0 0
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Columns19through24
0 0 0 0 0 0
0 0 0 0 0 0

1.0000E+O0 0 0 0 0 0
0 1.0000E+O0 0 0 0 0

0 0 1.O000E+O0 0 0 0

0 0 0 1.0000E+00 0 0
0 0 0 0 1.0000E+00 0

0 0 0 0 0 1.O000E+O0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

-2.5225E-01 0 0 0 0 0
0 -2.5335E-01 0 0 0 0

0 0 -2.6425E-01 0 0 0

0 0 0 -2.7595E-01 0 0
0 0 0 0 -3.4566E-01 0

0 0 0 0 0 -3.8827E-01

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
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Columns 25 through 30
0
0

0

0

0

0

0
0

1.0000E+00
0

0

0

0

0
0

0

0

0

0
0

0

0

0

0

-3.9149E-01
0

0

0

0
0

0

0

0

0

0

0

0
0

0

0

0

1.0000E+00
0

0

0

0

0
0

0

0

0

0
0

0

0

0

0

-4.0658E-01
0

0

0

0
0

0

0

0

0

0

0

0
0

0

0

0

1.0000E+00

0
0

0

0

0

0
0

0

0

0

0
0

0

0

0

-4.1908E-01

0
0

0

0

0

0

0
0

0

0

0

0
0

0

0

0

1.0000E+00

0
0

0

0

0

0

0
0

0

0

0
0

0

0

0

-4.6322E-01
0

0

0

0

0

0

0

0
0

0

0

0

0

0
0

0

1.0000E÷00
0

0
0

0

0

0

0
0

0

0

0
0

0

0

0

-5.2108E-01
0

0

0

0
0

0

0

0

0
0

0

0

0

0

0
0

1.0000E+00
0

0
0

0

0

0

0
0

0

0

0
0

0

0

0

-5.6337E-01

0
0
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Columns 31 through 32
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1.0000E+00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-7.8451E-01
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1.0000E÷00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-1.0589E+00
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Bt

Columns 1 through 6
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

-1.7116E-01 -5.8049E-03 2.0869E-01 3.2349E-03 - 1.0585E-03 1.0457E-01

- 2.9829E-03 -3.5789E- 01 - 1.2875E- 03 2.5253E- 01 - 3.8650E- 02 - 3.3579E- 03
-2.0542E-01 -7.2812E-02 -9.5226E-03 7.2871E-03 -5.5209E-02 6.7861E-02

-8.3452E-01 -1.7241E-02 -4.2512E-02 -2.1983E-02 -2.8225E-03 2.8268E-01

-2.7311E-01 - 1.0499E-01 -4.2532E-02 -5.3459E-03 -5.4968E-02 1.0531E-01

8.3909E-02 - 1.0430E+00 -4.9171E-03 -6.5816E-02 -4.8285E-01 -3.5314E-02

3.0662E-01 -4.5815E-02 4.1271E-01 - 1.2829E-02 6.0601E-03 -8.9994E-02
1.5476E-02 -5.8067E-01 -3.6281E-02 -3.9609E-01 -1.8812E-01 -3.4468E-02

1.1892E-01 -3.9154E-02 3.6029E-01 -9.2921E-02 2.3797E-02 3.5179E-01

-2.0457E-02 3.3652E-01 1.9963E-01 2.5025E-02 - 1.8725E-02 -2.1458E-01

-6.8681E-02 1.0751E+00 - 1.2244E-01 -1.4175E-01 6.5808E-02 3.4202E-02

5.4524E-03 5.4087E-01 1.5533E-01 1.0847E+00 -6.6816E-01 2.2399E-02
-2.0571E-01 2.7394E-02 -9.8462E-01 1.0100E-01 -4.6903E-02 4.6728E-02

- 1.5396E÷00 - 1.0585E- 01 - 1.7445E- 01 -6.0191E-03 - 1.5392E- 03 - 1.2358E- 03
- 1.0503E-02 1.9177E-01 3.6153E-02 6.2227E-01 4.0364E-01 5.9594E-03

1.7533E-01 1.5125E-01 1.1805E-01 7.5504E-01 -2.2316E-02 2.6324E-02
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Columns 7 through 8
0

0

0
0

0

0

0

0
0

0

0

0
0

0

0

0

-7.9081E-03
-2.0767E-01

- 4.1550E- 02

-5.3852E-02
-6.0046E-02

-4.0749E-01

1.0370E-02
1.6912E-01

- 1.0616E-01

-5.2492E-01

-2.2117E+00

5.2024E-01
1.0856E-01

1.1115E-01

3.7390E-01
1.0209E-01

0

0

0

0

0
0

0

0

0

0
0

0

0

0

0
0

-2.1884E-01

3.3597E-03

1.1263E-01
4.5806E-01

1.5792E-01

-4.2931E-02

-5.1029E-01
8.8657E-02

- 1.1353E÷00

-1.2112E+00

3.0859E-01
5.3702E-02

-3.1874E-01

-2.4079E-01

1.3817E-02
-7.8110E-03
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Ct _-

Columns 1 through 6
3.5788E+01

1.2138E+00

-4.3635E+01
-6.7639E-01

2.2132E-01

-2.1865E+01

1.6535E+00

4.5758E+01

9.4882E-01

1.1384E+02
4.0954E-01

-8.0327E+01

1.2294E+01

1.0681E+00

6.6057E+01
- 1.0687E+00

Columns 7 through 12
-3.6635E+02

5.4740E+01

-4.9311E+02
1.5328E+01

- 7.2407E+00

1.0753E+02

-1.2390E+01
6.0970E+02

-2.3331E+01

8.7538E+02
5.4695E+01

5.9712E+02

2.8360E+02

5.1962E+01
-2.5495E+02

-1.3365E+02

1.3071E+02

4.6330E+01
6.0592E+00

-4.6368E+00

3.5130E+01

-4.3180E+01

2.6438E+01
-7.1667E+01

- 1.8226E+02

6.0009E+01

-5.5220E+02

1.4241E+02

-3.6472E+01
-5.3917E+02

1.6271E+02

1.7400E+03

5.3565E+02

1.1066E+01

2.7287E+01

1.4110E+01

1.8117E÷00
- 1.8144E+02

3.4566E+01

-2.9401E+02

3.3817E+01

-5.5629E+02

-3.3000E+02

-4.1368E+01
3.0954E+01

3.5472E+02

8.6773E+02

2.0022E+03

1.9071E+02

7.3312E+01

2.9699E+01

3.7329E+00
3.8383E+01

-7.3536E+01

4.1929E+01

- 1.1027E+02

1.2062E÷02

- 1.8882E+03

2.1504E÷02
2.4895E+02

- 1.1558E+02

-6.0068E+01

3.8844E+03

-5.4197E÷02

-6.3895E+01

7.9423E+02

3.7443E+00

5.0118E+01
3.6768E+02

2.6891E+01

3.1030E+02

3.2691E+01

-1.1699E+01

- 1.1606E+03

-3.3330E+02
-2.3275E+03

1.4337E+03

-4.8062E+01

- 1.1163E+03

- 1.1523E+02

Columns 13 through 18
5.5855E+02 4.8865E+03 6.4641E+01 - 1.9659E+03 2.4750E-02 5.3200E-04

-7.4381E+01 3.3595E+02 -1.1803E+03 -1.6959E+03 8.3939E-04 6.3830E-02

2.6735E+03 5.5368E+02 -2.2251E+02 - 1.3237E+03 -3.0177E-02 2.2963E-04

-2.7424E+02 1.9104E+01 -3.8298E+03 -8.4660E+03 -4.6777E-04 -4.5039E-02

1.2735E+02 4.8852E+00 -2.4842E+03 2.5022E+02 1.5306E-04 6.8932E-03
- 1.2688E+02 3.9223E+00 -3.6677E+01 -2.9516E+02 - 1.5121E-02 5.9888E-04

-2.9477E+02 -3.5277E+02 -2.3012E+03 -1.1447E+03 1.1435E-03 3.7038E-02

8.6546E+02 7.6423E+02 -8.5038E+01 8.7582E+01 3.1644E-02 -5.9920E-04

Columns 19 through 24
5.1817E-02

1.8367E-02
2.4021E-03

- 1.8382E-03

1.3926E-02

-1.7118E-02

1.0481E-02
-2.8411E-02

2.1143E-01
4.3680E-03

1.0770E-02

5.5694E-03

7.1508E-04

-7.1617E-02
1.3643E-02

-1.1605E-01

7.2169E-02

2.7744E-02

1.1239E-02

1.4127E-03

1.4525E-02

-2.7828E-02
1.5867E-02

-4.1730E-02

2.8783E-02

-4.5055E-01
5.1312E-02

5.9405E-02

-2.7579E-02
- 1.4333E- 02

9.2688E-01

-1.2932E-01

Columns 25 through 30
-4.6556E-02

1.5328E-02

- 1.4105E-01
3.6378E-02

-9.3163E-03

-1.3772E-01

4.1561E-02
4.4446E-01

-2.3155E-02

2.8782E-01

1.3569E-03

1.8162E-02

1.3324E-01
9.7449E-03

1.1245E-01

1.1847E-02

-2.5257E-03

-2.5054E-01

-7.1952E-02

-5.0245E-01
3.0951E-01

- 1.0376E-02

-2.4099E-01

-2.4876E-02

8.3174E-03

- 1.3682E-01
-8.1166E-02

-1.0175E-02

7.6132E-03

8.7244E-02
2.1342E-01

4.9245E-01

Columns 31 through 32

- 1.0599E-01

1.5836E-02

- 1.4266E-01

4.4345E-03
-2.0947E-03

3.1107E- 02

-3.5845E-03

1.7639E-01

1.0719E-01

- 1.4274E-02

5.1307E-01

-5.2629E-02
2.4440E-02

-2.4349E-02

-5.6568E-02

1.6609E-01

8.2397E-03

- 1.5045E-01

-2.8362E-02

-4.8818E-01
-3.1666E-01

-4.6752E-03

-2.9333E-01

- 1.0840E- 02

- 1.8566E- 01

-1.6016E-01

- 1.2500E-01
-7.9951E-01

2.3630E-02

-2.7874E-02

-1.0810E-01

8.2711E-03

-6.0089E-03

2.2546E-01

1.4087E-02

1.5379E-01
7.3041E-02

1.3383E-02

-6.5664E-02

-3.4423E-02

8.6736E-01

5.9633E-02

9.8280E-02
3.3910E-03

8.6714E-04

6.9621E-04

-6.2619E-02

1.3565E-01
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Dt _-

Columns 1 through 6
3.4067E÷00
4.8934E-02

6.7837E-01

1.1984E-01

- 1.3647E-02
-2.8674E-01

1.6819E-02

-2.6614E-01

4.8934E-02

3.2066E+00

3.4160E-02
8.9253E-01

4.1129E-01

1.0130E-02

- 1.7796E+00

-4.1046E-05

Columns 7 through 8
1.6819E-02

- 1.7796E+00

1.1186E-01

1.1030E÷00
- 1.6368E-01

4.2827E-03

5.8696E+00
3.4138E-02

-2.6614E-01

-4.1046E-05
-6.1139E-01

2.5951E-02

- 1.3970E-02

3.2796E-02
3.4138E-02

3.5793E+00

6.7837E-01

3.4160E-02

1.4429E+00
1.8143E-01

-3.4086E-02

9.6979E-03

1.1186E-01
-6.1139E-01

1.1984E-01

8.9253E-01
1.8143E-01

2.3992E+00
-4.1076E-01

2.0039E-02

1.1030E+00
2.5951E-02

- 1.3647E-02

4.1129E-01
-3.4086E-02

-4.1076E-01

8.9345E-01

1.1979E-02

- 1.6368E-01
- 1.3970E-02

-2.8674E-01

1.0130E-02
9.6979E-03

2.0039E-02

1.1979E-02

2.9147E-01

4.2827E-03
3.2796E-02
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Table I. Open-Loop-System Characteristics of Phase 0 Model

Mode

1

2

3
4

5

6

7
8

9

10

11

12

13
14

15

16

17
18

19

20

21
22

23

24

25

Eigenvalues

Real I
-4.622E-3

-4.682E-3

-4.876E-3
-2.294E-2

-2.349E-2

-2.746E-2

-4.629E-2

-5.460E-2
-5.916E-2

-7.230E-2

-8.918E-2

- 1.261E- 1

-1.267E-1
-1.321E-1

- 1.380E- 1

- 1.728E- 1

-1.941E-1

-1.958E-1
-2.033E- I

-2.095E-1
-2.316E-1

- 2.605E- 1

-2.817E-1

-3.922E-1

-5.294E-1

-l-Imaginary

9.243E- 1

9.365E- i

9.752E-1
4.587E+0

4.698E+0

5.491E+0

9.258E+0

1.092E+1
1.183E+1

1.446E+1

1.783E+1

2.522E+ 1

2.534E+1
2.642E+1

2.760E+ 1

3.457E+1

3.883E+1

3.915E+1
4.066E÷ i

4.191E+1

4.632E+1
5.211E+1

5.634E+1

7.845E+1

1.059E+2

Frequency, Hz

0.147

.149

.155
•730

•748

.874

1.474

1.738
I •883

2.301

2.838

4.015

4.032
4.206

4.392

5.501

6.180

6.231
6.471

6.670

7.372
8.293

8.966

12.49

16.85
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Table II. Eigenvalues of KA(s) Optimal Compensator System Matrix With eA = eA,max

[(k,i, a) = (0.1, 2, 0.5); eA,m_ = 0.6749]

--.7197

--.7088

-- .5482

--.5462

--.5361

--.5283

--.5066

--.4936

--.4746

--.4684

--.4610

--.4595

- .3868

- .3723

Real

- 1.857E- 1

-2.983E-1

- 1.342E- 1

-3.402E-2

-2.898E-2

-3.684E-2

-5.027E-2

-6.042E-2

-5.962E-2

Complex

:i=Imaginary

1.i15E-1
7.433E- 1

8.200E- 1

4.579E+0

4.685E+0

5.468E+0

9.245E+ 1

1.090E+l

1.183E+ I

Table III. Closed-Loop Eigenvalues of Design Model Controlled by Optimal Compensator K(s) With eA = eA,m_

[(k, i, a) = (0.1,2, 0.5); eA,m_ = 0.6749]

Open-loop mode

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Real

-4.426E-2

-7.079E-2

- 1.096E- 1

-2.716E-2

-2.658E-2

-3.237E-2

-4.820E-2

-5.723E-2

-5.968E-2

-7.234E-2

-8.920E-2

-1.261E-1

- 1.268E- 1

-1.321E-1

- 1.380E- 1

- 1.729E- 1

-1.941E-1

- 1.958E- 1

- 2.033E- 1

-2.097E- 1

-2.316E-1

-2.606E- 1

-2.818E-1

-3,923E- 1

- 5.295E- 1

Complex

:t:Imaginary

9.246E- 1

9.485E-1

9.645E- 1

4.588E+0

4.698E+0

5.491E+0

9.258E+0

1.092E+ 1

1.183E+1

1.446E+ 1

1.784E+ 1

2.523E+1

2.534E+1

2.643E+1

2.760E+ 1

3.457E+1

3.883E+ 1

3.915E+1

4.066E+1

4.191E+1

4.632E+1

5.211E+1

5.634E+1

7.845E+ 1

1.059E+2

Damping ratio, (

0.0478

.0744

.1291

.0059

.0057

.0059

.0052

.0052

.0054

.0050

.0050

.0050

.0050

.0050

.0050

.0050

.0050

.0050

.0050

.OO5O

.0050

.OO5O

.0050

.0050

.0050
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Table IV. Eigenvalues of KA(S ) Suboptimal Compensator System Matrix With eA = O.9eA,max

[(k,i,a) = (0.5, 1,0.1);CA,max = 0.6670]

Real

a-0.1000

-.1612

-.2945

-.4769

-1.8518

-3.1977

-6.8123

Real

-2.296E+0

-2.366E- 1

- 1.859E+0

-2.339E+0

-3.535E+0

- 1.408E+0

Complex

:t:Imaginary

4.230E+0

4.690E+0

5.232E+0

8.859E+0

9.659E+0

1.103E+l

"Repeated eigenvalues of multiplicity 8.

Table V. Closed-Loop Eigenvalues of Design Model Controlled by Suboptimal Compensator K(s) With eA = 0.9CA,max

[(k,i,a) = (0.5, 1,O.1);eA,max = 0.6670]

Open-loop mode

a1

_2

3

4

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

2,1

25

Real

- 1.767E- 1

or

-9.510E-2

-4.760E- 1

-6.248E-1

-9.416E- 1

-4.921E-1

-8.062E-2

- 1.056E- 1

- 1.266E'- 1

-1.391E-1

- 1.336E- 1

- 1.606E- 1

-1.747E-1

- 1.953E- 1

-2.038E- 1

-2.133E-1

-2.122E-1

-2.334E-1

- 2.623E- 1

-2.895E-1

-3.924E-1

-5.295E-1

_Imaginary

8.872E- 1

4.620E+0

4.671E+0

or

4.653E+0

Complex

5.480E+0

9.237E+0

1.086E+ 1

1.178E+1

1.447E+1

1.785E+1

2.522E+ 1

2.538E+1

2.643E+1

2.766E+1

3.458E+1

3.884E+1

3.919E+1

4.071E+1

4.194E+1

4.634E+ 1

5.212E+1

5.639E+1

7.845E+1

1.059E+2

Damping ratio, (

0.2822

.1122

.0378

or

,0204

.0865

.0675

.0838

.0417

.0056

.0059

.0050

.0055

.0051

.0058

.0050

.0050

.0052

.0052

.0051

.0050

.0050

.0051

.0050

.0050

"Not discernible from data.
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TableVI. EigenvaluesofKA(S)SuboptimalCompensatorSystemMatrixWitheA ----0

[(k,i,a) = (0.5, 1,0. i);eA,max = 0.6670]

Real

a-0.1000

-.3663

-2.5134

Real

- 7.687E- 1

-5.185E-1

- 1.039E+0

- 1.568E- 1

-9.240E- 1

- 1.188E+0

- 1.808E+0

- 8.976E- 1

Complex

+Imaginary

5.570E- 1

7.661E-1

4.555E+0

4.661E+0

5.427E+0

9.153E+0

1.063E+ 1

1.161E+l

aRepeated eigenvalues of multiplicity 8.

Table VII. Closed-Loop Eigenvalues of Design Model Controlled by Suboptimal Compensator

K(s) With eA = 0

[(k, i,a) -- (o._,1,0.1);,a ..... = 0.6670]

Open-loop mode

a 1

a 2

3

4

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Real

-4.956E- 1

or

-9.308E-2

- 4.497E- 1

-5.895E- 1

-8.884E- 1

-4.683E- 1

-7.423E-2

-9.251E-2

- 1.262E- 1

- 1.287E- 1

- 1.324E- 1

-1.417E-1

-1.731E-1

- 1.943E- 1

-1.971E-1

- 2.048E- 1

-2.100E-1

-2.319E-1

-2.608E- t

-2.828E- 1

-3.923E- 1

-5.295E- 1

=t=Imaginary

8.945E- l

4.581E+0

4.647E+0

or

4.653E+0

Complex

5.503E+0

9.275E+0

1.092E+1

1.181E+1

1.446E+ 1

1.784E+1

2.523E+ 1

2.535E+ 1

2.643E+ 1

2.762E+1

3.457E+1

3.883E+ 1

3.916E+1

4.067E+ 1

4.192E+ 1

4.633E+1

5.211E+1

5.635E+1

7.845E+ 1

1.059E+2

Damping ratio,

(}.2769

.1181

•1060

(Jr

.0200

•0814

.0634

.(}811

•0396

.0051

.(}052

.0050

.0051

.(}050

•0051

.0050

.0050

.0050

.0050

.0050

.005(}

.0050

.0050

.0050

.0050

aNot discernible from data.
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Figure 3. Loop-shaping procedure.
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Figure 6. Unweighted open-loop nominal and truncated systems.
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Figure 7. Unweighted optimal and suboptimal compensators (K(s)) with ernax = 0.4417.
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Figure 9. Weighted optimal compensator (iA(s)) with (k, i, a) = (0.1, 2, 0.5) and eA = _A,max = 0.6749.
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Figure 11. Robustness conditions for inequalities (40) and (41) for weighted optimal compensator (K(s)) with
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_A =: CA,max ----0.6749 and K(s) - (s + 0.5) 2 At ).
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Figure 13. Weighted suboptimal compensator (KA(s)) with (k,i,a) = (0.5,1,0.1), eA = 0.9CA,max, and

eA,max = 0.667.
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Figure 19. Input time history of actuator 7 for optimal compensator at (k, i, a) = (0.1, 2, 0.5).
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Figure 20. Output time history of accelerometer 7 for optimal compensator at (k, i, a) = (0.1, 2, 0.5). In this
figure the two curves coincide.
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Figure 21. Input time history of actuator 8 for optimal compensator at (k, i, a) = (0.1, 2, 0.5).
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Figure 22. Output time history of accclcromcter 8 for optimal compensator at (k, i, a) = (0.1, 2, 0.5). In this
figure the two curves coincide.
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Figure 23. Input time history of actuator 7 for optimal compensator at (k, i, a) = (2, 2, 0.5).
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Figure 24. Output time history of accelerometer 7 for optimal compensator at (k, i, a) = (2, 2, 0.5 _.
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Figure25. Input timehistoryof actuator8 for optimalcompensatorat (k,i, a) = (2, 2, 0.5).
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Figure 26. Output time history of accelerometer 8 for optimal compensator at (k, i, a) = (2, 2, 0.5).
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Figure 27. Input time history of actuator 7 for suboptimal compensator at eA = 0.9eA,max and eA,max ----0.667.
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Output time history of suboptimal accelerometer 7 at eA = 0.9CA,ma x and _A,max : 0.667.
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Figure 29. Input time history of actuator 8 for suboptimal compensator at _A = 0.9_A,rnax and CA,max = 0.667.
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Figure 30. Output time history of suboptimal accelerometer 8 at eA = 0-9CA,max and CA,max = 0.667.
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Figure31. Input timehistoryof actuator7for suboptimalcompensatorat cA = 0.
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Figure 32. Output time history of suboptimal accelerometer 7 at eA = 0.
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Figure 33. Input time history of actuator 8 for suboptimal compensator at _A = 0.
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Figure 34. Output time history of suboptimal accelerometer 8 at ¢A = 0.
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